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The Blessing and the Curse:

Lots of Data

Outlook Temp Humidity Wind Play
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mold High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mold High Strong Yes

Overcast Hot Normal Weak Yes
Rain Mold High Strong No

Take Yahoo Inc.'s 2-petabyte, specially built data warehouse,
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1 petabyte is
250 pytes,
1024 terabytes,
or a million gigabytes

which it uses to analyze the behavior of its half-billion Web visitors per month (2008).



The Problem:

Data vs. Information

Outlook Temp Humidity Wind Play
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mold High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mold High Strong Yes

Overcast Hot Normal Weak Yes
Rain Mold High Strong No

Data

Information



Information as Patterns

e From an Al perspective information is
represented as patterns

patterns summarize large collections of data

patterns can be converted into actionable
information

iIn Yahoo's case, web behavior patterns can be
connected to the kinds of online ads Yahoo might
show to its customers.

patterns come in all kinds of shapes and forms
graphical, rule-based, visual, numeric, efc.



Can You find some Patterns

here?

Outlook Temp Humidity Wind Play
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mold High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mold High Strong Yes

Overcast Hot Normal Weak Yes
Rain Mold High Strong No

Data

Information



A Tree based Pattern

Outlook Temp Humidity Wind Play
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mold High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mold High Strong Yes

Overcast Hot Normal Weak Yes
Rain Mold High Strong No
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Rule based Patterns

Best rules found:

. outlook=overcast 4 ==> play=yes 4 conf:(1)

. temperature=cool 4 ==> humidity=normal 4 conf:(1)

. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1)

. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)
outlook=sunny humidity=high 3 ==> play=no 3 conf:(1)
outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1)
outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1)
temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1)

. outlook=sunny temperature=hot 2 ==> humidity=high 2 conf:(1)
10. temperature=hot play=no 2 ==> outlook=sunny 2 conf:(1)
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These are called “association rules.”




Visual Pattern

Bacterium b-cereus on different agars

Self-Organizing Map
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Numeric Patterns
nput Hidden Ontput
Values
10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — (1000000 ég?
00100000 — .01 .97 .27 — 00100000 o
00010000 — .99 .97 .71 — 00010000 111
00001000 — .03 .05 .02 — 00001000 000
00000100 — .22 .99 .99 — 00000100 e
00000010 — .80 .01 .98 — 00000010 110
00000001 — .60 .94 .01 — 00000001

ANNSs learn numeric patterns on the weighted connections of their neurons.



Decision Tree Learning

e "Supervised Learning” — we have a key
concept (target attribute) that we want to
learn, e.g. when to play tennis.

e The key idea Is that the attributes and their
values should be used to sort the data
instances in such a way that target attribute is
a non-random as possible — its entropy as
close to O as possible.



Entropy

S 1s a sample of training
examples

p* 1s the proportion of
positive examples in S

Entropy(S)

p~ 1s the proportion of
negative examples in §

Entropy measures the
impurity (randomness) of S

Entropy(S) = -p* log,p* - p~log,p~




Decision Tree Learning

Recursive Algorithm
Main loop:

@ Let attribute A be the attribute that minimizes the
average entropy at the current node

For each attribute value of A, create new
decendents of current node

@
@ Sort training examples to decendents
@

If training examples are perfectly sorted
(entropy=0), then STOP, else iterate over
decendents.



How does that exactly work?

Outlook Temp Humidity Wind Play
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mold High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes

Overcast Mold High Strong Yes

Overcast Hot Normal Weak Yes
Rain Mold High Strong No
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Decision Tree Learning

9yes/5no
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Decision Tree Learning
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Decision Tree Learning
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Decision Tree Learning
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The Limits of Big Data

e There are some domains that are infinite, that
IS, there are an infinite number of distinct
observations one could collect.

e That implies that even the biggest data
warehouse will not be able to store all the
observations.

e That means we are building patterns from
only partial information — a problem for
inductive reasoning.



The Limits of Big Data

e Karl Popper (1902-1994) was a philosopher
of science and first put forward the problem
of inductive reasoning as the “black swan”
problem.

“With a limited sample on swans you will most
likely conclude that all swans are white. But it
turns out there are black swans in Australia.”

Paraphrasing this: our patterns are only as good
as the data which generated them.



The Limits of Big Data

If your data warehouse only
captures D of the overall data
universe X, then your pattern:

“all swans are white”
will not be correct.




Weka Demo

e \Weka is a data mining tool freely available on
the web.

e |t is written in Java and should probably not
be used for big data projects but it is a great
way to experiment with tools and techniques
important to big data projects.
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