# Big Data: The Science of Patterns

Dr. Lutz Hamel Dept. of Computer Science and Statistics

hamel@cs.uri.edu

# The Blessing and the Curse: Lots of Data

| Outlook  | Temp | Humidity | Wind   | Play |
|----------|------|----------|--------|------|
| Sunny    | Hot  | High     | Weak   | No   |
| Sunny    | Hot  | High     | Strong | No   |
| Overcast | Hot  | High     | Weak   | Yes  |
| Rain     | Mild | High     | Weak   | Yes  |
| Rain     | Cool | Normal   | Weak   | Yes  |
| Rain     | Cool | Normal   | Strong | No   |
| Overcast | Cool | Normal   | Strong | Yes  |
| Sunny    | Mold | High     | Weak   | No   |
| Sunny    | Cool | Normal   | Weak   | Yes  |
| Rain     | Mild | Normal   | Weak   | Yes  |
| Sunny    | Mild | Normal   | Strong | Yes  |
| Overcast | Mold | High     | Strong | Yes  |
| Overcast | Hot  | Normal   | Weak   | Yes  |
| Rain     | Mold | High     | Strong | No   |



Take Yahoo Inc.'s **2-petabyte**, specially built **data warehouse**, which it uses to analyze the behavior of its half-billion Web visitors per month (2008).

# The Problem: Data vs. Information

| Outlook  | Temp | Humidity | Wind   | Play |
|----------|------|----------|--------|------|
| Sunny    | Hot  | High     | Weak   | No   |
| Sunny    | Hot  | High     | Strong | No   |
| Overcast | Hot  | High     | Weak   | Yes  |
| Rain     | Mild | High     | Weak   | Yes  |
| Rain     | Cool | Normal   | Weak   | Yes  |
| Rain     | Cool | Normal   | Strong | No   |
| Overcast | Cool | Normal   | Strong | Yes  |
| Sunny    | Mold | High     | Weak   | No   |
| Sunny    | Cool | Normal   | Weak   | Yes  |
| Rain     | Mild | Normal   | Weak   | Yes  |
| Sunny    | Mild | Normal   | Strong | Yes  |
| Overcast | Mold | High     | Strong | Yes  |
| Overcast | Hot  | Normal   | Weak   | Yes  |
| Rain     | Mold | High     | Strong | No   |





Data

Information

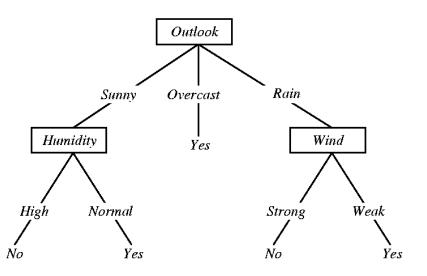
# **Information as Patterns**

- From an AI perspective information is represented as patterns
  - patterns summarize large collections of data
  - patterns can be converted into actionable information
    - in Yahoo's case, web behavior patterns can be connected to the kinds of online ads Yahoo might show to its customers.
  - patterns come in all kinds of shapes and forms
    - graphical, rule-based, visual, numeric, etc.



# Can You find some Patterns here?

| Outlook  | Temp | Humidity | Wind   | Play |
|----------|------|----------|--------|------|
| Sunny    | Hot  | High     | Weak   | No   |
| Sunny    | Hot  | High     | Strong | No   |
| Overcast | Hot  | High     | Weak   | Yes  |
| Rain     | Mild | High     | Weak   | Yes  |
| Rain     | Cool | Normal   | Weak   | Yes  |
| Rain     | Cool | Normal   | Strong | No   |
| Overcast | Cool | Normal   | Strong | Yes  |
| Sunny    | Mold | High     | Weak   | No   |
| Sunny    | Cool | Normal   | Weak   | Yes  |
| Rain     | Mild | Normal   | Weak   | Yes  |
| Sunny    | Mild | Normal   | Strong | Yes  |
| Overcast | Mold | High     | Strong | Yes  |
| Overcast | Hot  | Normal   | Weak   | Yes  |
| Rain     | Mold | High     | Strong | No   |




Information



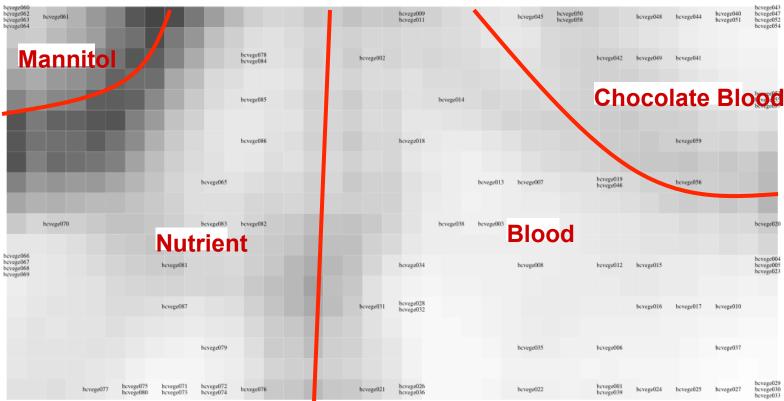
# **A Tree based Pattern**

| Outlook  | Temp | Humidity | Wind   | Play |
|----------|------|----------|--------|------|
| Sunny    | Hot  | High     | Weak   | No   |
| Sunny    | Hot  | High     | Strong | No   |
| Overcast | Hot  | High     | Weak   | Yes  |
| Rain     | Mild | High     | Weak   | Yes  |
| Rain     | Cool | Normal   | Weak   | Yes  |
| Rain     | Cool | Normal   | Strong | No   |
| Overcast | Cool | Normal   | Strong | Yes  |
| Sunny    | Mold | High     | Weak   | No   |
| Sunny    | Cool | Normal   | Weak   | Yes  |
| Rain     | Mild | Normal   | Weak   | Yes  |
| Sunny    | Mild | Normal   | Strong | Yes  |
| Overcast | Mold | High     | Strong | Yes  |
| Overcast | Hot  | Normal   | Weak   | Yes  |
| Rain     | Mold | High     | Strong | No   |



Information

# **Rule based Patterns**




Best rules found:

- 1. outlook=overcast 4 ==> play=yes 4 conf:(1)
- 2. temperature=cool 4 ==> humidity=normal 4 conf:(1)
- 3. humidity=normal windy=FALSE 4 ==> play=yes 4 conf:(1)
- 4. outlook=sunny play=no 3 ==> humidity=high 3 conf:(1)
- 5. outlook=sunny humidity=high 3 ==> play=no 3 conf:(1)
- 6. outlook=rainy play=yes 3 ==> windy=FALSE 3 conf:(1)
- 7. outlook=rainy windy=FALSE 3 ==> play=yes 3 conf:(1)
- 8. temperature=cool play=yes 3 ==> humidity=normal 3 conf:(1)
- 9. outlook=sunny temperature=hot 2 ==> humidity=high 2 conf:(1)
- 10. temperature=hot play=no 2 ==> outlook=sunny 2 conf:(1)

These are called "association rules."

#### **Visual Pattern** Bacterium *b-cereus* on different agars



#### Self-Organizing Map

"You are what you eat!"



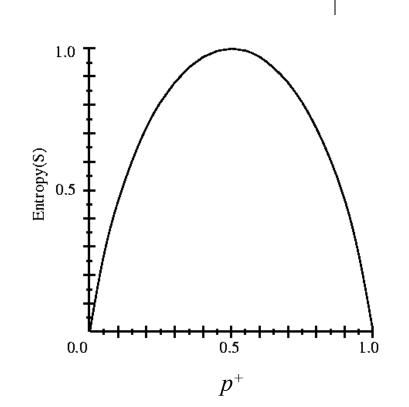
#### **Numeric Patterns**

Inputs



| Outputs | Input      | Hidden                    | Output                 |   |
|---------|------------|---------------------------|------------------------|---|
| P       |            | Values                    |                        |   |
| Ap      | 10000000 - | $\rightarrow$ .89 .04 .08 | $\rightarrow$ 10000000 | 8 |
|         | 01000000 - | $\rightarrow$ .01 .11 .88 | $\rightarrow$ 01000000 | 1 |
|         | 00100000 - | ightarrow .01 .97 .27     | $\rightarrow$ 00100000 |   |
|         | 00010000 - | $\rightarrow$ .99 .97 .71 | $\rightarrow$ 00010000 | 1 |
|         | 00001000 - | $\rightarrow$ .03 .05 .02 | $\rightarrow$ 00001000 | 0 |
|         | 00000100 - | $\rightarrow$ .22 .99 .99 | $\rightarrow$ 00000100 | 0 |
| 10      | 00000010 - | $\rightarrow$ .80 .01 .98 | $\rightarrow$ 00000010 | 1 |
|         | 0000001 -  | $\rightarrow$ .60 .94 .01 | $\rightarrow$ 00000001 | _ |

ANNs learn numeric patterns on the weighted connections of their neurons.




- "Supervised Learning" we have a key concept (target attribute) that we want to learn, e.g. when to play tennis.
- The key idea is that the attributes and their values should be used to sort the data instances in such a way that target attribute is a non-random as possible – its *entropy* as close to 0 as possible.

# Entropy

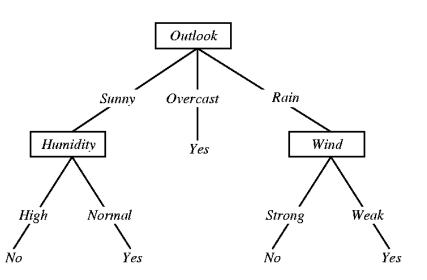
- *S* is a sample of training examples
- *p*<sup>+</sup> is the proportion of positive examples in S
- *p*<sup>-</sup> is the proportion of negative examples in *S*
- Entropy measures the impurity (randomness) of *S*

 $Entropy(S) = -p^+ \log_2 p^+ - p^- \log_2 p^-$ 





Recursive Algorithm


Main loop:

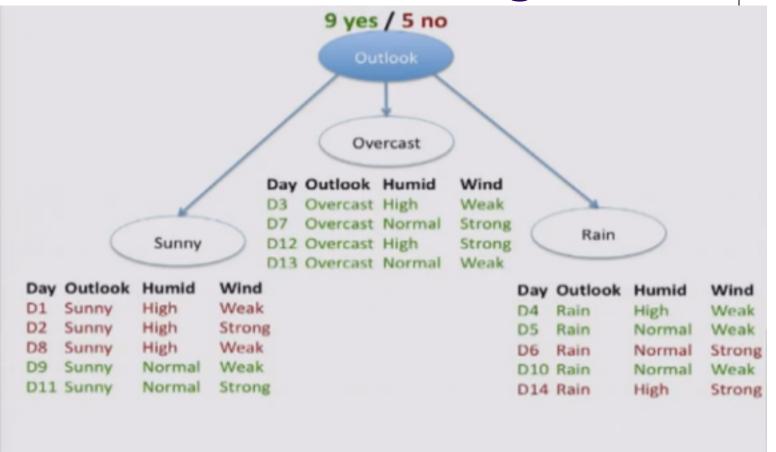
- ① Let attribute A be the attribute that minimizes the average entropy at the current node
- ② For each attribute value of A, create new decendents of current node
- ③ Sort training examples to decendents
- If training examples are perfectly sorted (entropy=0), then STOP, else iterate over decendents.



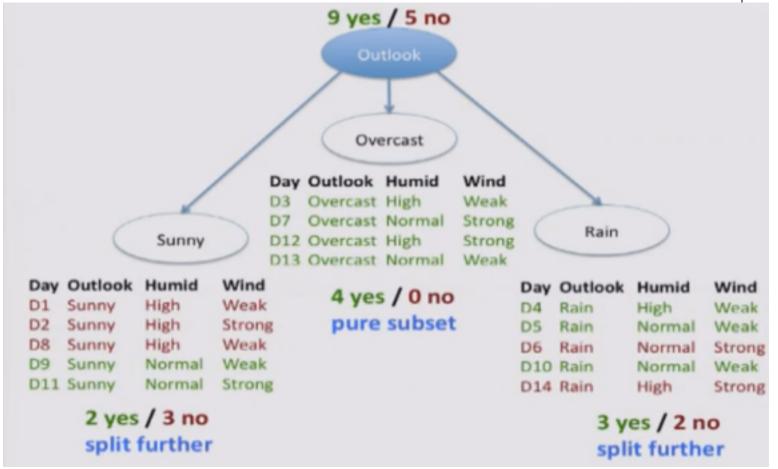
# How does that exactly work?

| Outlook  | Temp | Humidity | Wind   | Play |
|----------|------|----------|--------|------|
| Sunny    | Hot  | High     | Weak   | No   |
| Sunny    | Hot  | High     | Strong | No   |
| Overcast | Hot  | High     | Weak   | Yes  |
| Rain     | Mild | High     | Weak   | Yes  |
| Rain     | Cool | Normal   | Weak   | Yes  |
| Rain     | Cool | Normal   | Strong | No   |
| Overcast | Cool | Normal   | Strong | Yes  |
| Sunny    | Mold | High     | Weak   | No   |
| Sunny    | Cool | Normal   | Weak   | Yes  |
| Rain     | Mild | Normal   | Weak   | Yes  |
| Sunny    | Mild | Normal   | Strong | Yes  |
| Overcast | Mold | High     | Strong | Yes  |
| Overcast | Hot  | Normal   | Weak   | Yes  |
| Rain     | Mold | High     | Strong | No   |

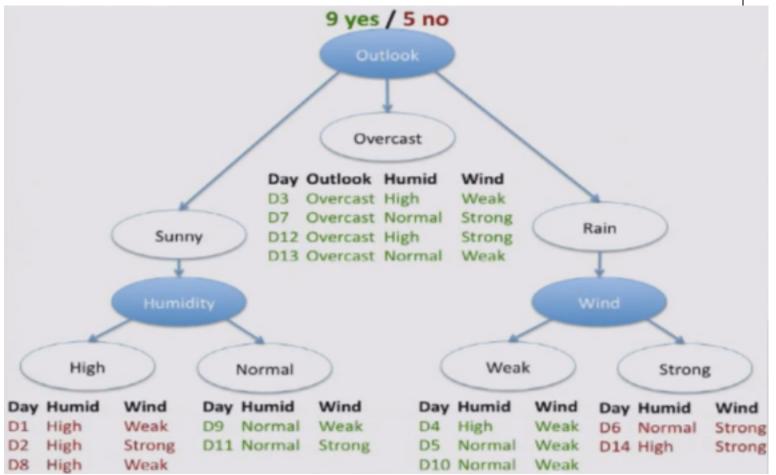



Information

Data













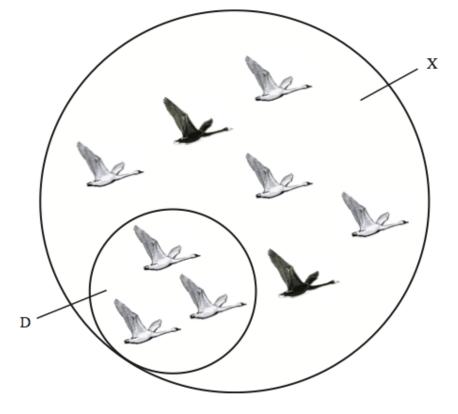



# The Limits of Big Data



- There are some domains that are infinite, that is, there are an infinite number of distinct observations one could collect.
- That implies that even the biggest data warehouse will not be able to store all the observations.
- That means we are building patterns from only partial information – a problem for *inductive reasoning*.

# The Limits of Big Data




- Karl Popper (1902-1994) was a philosopher of science and first put forward the problem of inductive reasoning as the "black swan" problem.
  - "With a limited sample on swans you will most likely conclude that all swans are white. But it turns out there are black swans in Australia."
  - Paraphrasing this: our patterns are only as good as the data which generated them.



# The Limits of Big Data

If your data warehouse only captures D of the overall data universe X, then your pattern: "all swans are white" will not be correct.



# Weka Demo



- Weka is a data mining tool freely available on the web.
- It is written in Java and should probably not be used for big data projects but it is a great way to experiment with tools and techniques important to big data projects.
- <u>http://www.cs.waikato.ac.nz/ml/weka/</u>
- <u>repository.seasr.org/Datasets/UCI/arff/mushroom.arff</u>

#### **Resources and References**

- Tom Mitchell -- Machine Learning, McGraw Hill, 1997
- Karl Popper -- The Logic of Scientific Discovery, 1934 (as Logik der Forschung, English translation 1959), ISBN 0-415-27844-9
- Weka Data Mining -- <u>http://www.cs.waikato.ac.nz/ml/weka/</u>
- Yahoo! data warehouse -- <u>http://www.computerworld.com/article/2535825/business-intelligence/size-</u> <u>matters--yahoo-claims-2-petabyte-database-is-world-s-biggest--busiest.html</u>
- Decision tree learning -- <u>http://youtu.be/eKD5gxPPeY0?</u> <u>list=PLBv09BD7ez\_4temBw7vLA19p3tdQH6FY0</u>

 Classifying Bacteria using SOM -- <u>Bayesian Probability Approach to Feature Significance for Infrared</u> <u>Spectra of Bacteria</u>, Lutz Hamel, Chris W. Brown, Applied Spectroscopy, Volume 66, Number 1, 2012.